Home Back

Obtuse Triangle Calculator

Obtuse Triangle Diagram

1. What is an Obtuse Triangle Calculator?

Definition: This calculator computes the area of an obtuse triangle, a triangle with one angle greater than 90°, based on different input scenarios: Base and Height, Three Sides (SSS), Two Sides + Angle Between (SAS), and Two Angles + Side Between (ASA).

Purpose: It aids in geometry education, engineering, and design by calculating the area of obtuse triangles for applications like land surveying, architecture, and material estimation.

2. How Does the Calculator Work?

The calculator supports four input scenarios for defining the obtuse triangle:

  • Base and Height:
    • Area: \( A = \frac{1}{2} \times b \times h \).
  • Three Sides (SSS):
    • Area: \( s = \frac{a + b + c}{2} \), \( A = \sqrt{s(s - a)(s - b)(s - c)} \).
    • Validation: Ensures one angle > 90° using Law of Cosines.
  • Two Sides + Angle Between (SAS):
    • Area: \( A = \frac{1}{2} \times a \times b \times \sin(\gamma) \).
    • Validation: Computes third side \( c = \sqrt{a^2 + b^2 - 2ab \cos(\gamma)} \) and checks for one angle > 90°.
  • Two Angles + Side Between (ASA):
    • Angle \( \alpha \): \( \alpha = 180^\circ - \beta - \gamma \).
    • Side \( b \): \( b = a \frac{\sin(\beta)}{\sin(\alpha)} \).
    • Side \( c \): \( c = a \frac{\sin(\gamma)}{\sin(\alpha)} \).
    • Area: \( A = \frac{1}{2} \times b \times c \times \sin(\alpha) \).
    • Validation: Ensures one angle > 90°.

Unit Conversions:

  • Length Units: m, cm (1 m = 100 cm), mm (1 m = 1000 mm), in (1 m = 39.3701 in), ft (1 m = 3.28084 ft), yd (1 m = 1.09361 yd).
  • Area Units: m², cm² (1 m² = 10000 cm²), mm² (1 m² = 1000000 mm²), in² (1 m² = 1550.0031 in²), ft² (1 m² = 10.7639 ft²), yd² (1 m² = 1.19599 yd²).
  • Angle Units: Degrees.

Steps:

  • Select the input scenario for the triangle.
  • Input the required dimensions (base, height, sides, angles) and select their units.
  • Validate inputs (positive values, triangle inequalities, valid angles, obtuse condition).
  • Convert inputs to meters for calculations.
  • Compute the area using the appropriate formula.
  • Convert outputs to the selected units and format to 4 decimal places or scientific notation for small values.

3. Importance of Obtuse Triangle Area Calculations

Calculating the area of obtuse triangles is crucial for:

  • Geometry Education: Understanding properties of non-right triangles.
  • Architecture and Engineering: Designing structures with obtuse triangular components, such as roof trusses.
  • Land Surveying: Measuring irregularly shaped plots with obtuse angles.

4. Using the Calculator

Examples:

  • Base and Height: Base \( b = 6 \, \text{cm} \), Height \( h = 4 \, \text{cm} \)
    Convert: \( b = 0.06 \, \text{m} \), \( h = 0.04 \, \text{m} \).
    Area: \( A = \frac{1}{2} \times 0.06 \times 0.04 \approx 0.0012 \, \text{m}^2 = 12.0000 \, \text{cm}^2 \).
  • Three Sides (SSS): Side \( a = 5 \, \text{cm} \), Side \( b = 4 \, \text{cm} \), Side \( c = 8 \, \text{cm} \)
    Convert: \( a = 0.05 \, \text{m} \), \( b = 0.04 \, \text{m} \), \( c = 0.08 \, \text{m} \).
    Check obtuse: \( \cos(\gamma) = \frac{0.05^2 + 0.04^2 - 0.08^2}{2 \times 0.05 \times 0.04} \approx -0.9750 < 0 \), so obtuse.
    Area: \( s = \frac{0.05 + 0.04 + 0.08}{2} = 0.085 \), \( A = \sqrt{0.085 \times (0.085 - 0.05) \times (0.085 - 0.04) \times (0.085 - 0.08)} \approx 0.0009 \, \text{m}^2 = 9.0000 \, \text{cm}^2 \).
  • Two Sides + Angle Between (SAS): Side \( a = 7 \, \text{cm} \), Side \( b = 5 \, \text{cm} \), Angle \( \gamma = 120^\circ \)
    Convert: \( a = 0.07 \, \text{m} \), \( b = 0.05 \, \text{m} \).
    Area: \( A = \frac{1}{2} \times 0.07 \times 0.05 \times \sin(2\pi/3) \approx 0.0015 \, \text{m}^2 = 15.1554 \, \text{cm}^2 \).
    Check obtuse: \( c = \sqrt{0.07^2 + 0.05^2 - 2 \times 0.07 \times 0.05 \times \cos(2\pi/3)} \approx 0.1082 \, \text{m} \).
    \( \cos(\alpha) = \frac{0.05^2 + 0.1082^2 - 0.07^2}{2 \times 0.05 \times 0.1082} \approx 0.9038 > 0 \), \( \cos(\beta) > 0 \), but \( \cos(\gamma) < 0 \), so obtuse.
  • Two Angles + Side Between (ASA): Angle \( \beta = 30^\circ \), Side \( a = 10 \, \text{cm} \), Angle \( \gamma = 110^\circ \)
    Convert: \( a = 0.1 \, \text{m} \).
    Angle \( \alpha \): \( \alpha = 180 - 30 - 110 = 40^\circ \).
    Side \( b \): \( b = 0.1 \times \frac{\sin(\pi/6)}{\sin(2\pi/9)} \approx 0.0745 \, \text{m} = 7.4517 \, \text{cm} \).
    Side \( c \): \( c = 0.1 \times \frac{\sin(11\pi/18)}{\sin(2\pi/9)} \approx 0.1416 \, \text{m} = 14.1646 \, \text{cm} \).
    Area: \( A = \frac{1}{2} \times 0.0745 \times 0.1416 \times \sin(2\pi/9) \approx 0.0020 \, \text{m}^2 = 20.3606 \, \text{cm}^2 \).

5. Frequently Asked Questions (FAQ)

Q: What is an obtuse triangle?
A: An obtuse triangle is a triangle with one angle greater than 90°, while the other two angles are less than 90°.

Q: Why does the calculator check for an obtuse angle?
A: The calculator ensures the triangle is obtuse by verifying that at least one angle exceeds 90°, using the Law of Cosines or direct angle input, to match the definition of an obtuse triangle.

Q: How is the area calculated for different scenarios?
A: The area is calculated using \( A = \frac{1}{2} \times \text{base} \times \text{height} \) for Base and Height, Heron's formula for SSS, and trigonometric formulas involving sines for SAS and ASA scenarios.

Obtuse Triangle Calculator© - All Rights Reserved 2025