Home Back

Weibull Distribution Calculator

Weibull Distribution Formula

1. What is the Weibull Distribution Calculator?

Definition: The Weibull Distribution Calculator computes common measures (mean, median, mode, variance, skewness), probability density function, cumulative distribution function, or quantile function for a Weibull distribution, based on scale and shape parameters, and optional inputs.

Purpose: This tool helps analyze data with a Weibull distribution, common in reliability engineering, survival analysis, and wind speed modeling, where the distribution shape is flexible.

2. How Does the Calculator Work?

The calculator uses the following formulas:

\( f(x) = \begin{cases} \frac{k}{\lambda} \left( \frac{x}{\lambda} \right)^{k-1} e^{-(x/\lambda)^k} & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases} \)

\( F(x) = \begin{cases} 1 - e^{-(x/\lambda)^k} & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases} \)

\( P(X \leq x) = F(x), \quad P(X < x) = F(x), \quad P(X > x) = 1 - F(x), \quad P(X \geq x) = 1 - F(x) \)

\( Q(p) = \lambda (-\ln(1-p))^{1/k} \)

\( M = \lambda \Gamma\left(1 + \frac{1}{k}\right) \)

\( MD = \lambda (\ln 2)^{1/k} \)

\( MO = \begin{cases} \lambda \left( \frac{k-1}{k} \right)^{1/k} & \text{if } k > 1 \\ 0 & \text{if } k \leq 1 \end{cases} \)

\( V = \lambda^2 \left[ \Gamma\left(1 + \frac{2}{k}\right) - \Gamma\left(1 + \frac{1}{k}\right)^2 \right] \)

\( S = \frac{\Gamma\left(1 + \frac{3}{k}\right) \lambda^3 - 3 M V - M^3}{V^{3/2}} \)

Where:

  • \( \lambda \): Scale parameter;
  • \( k \): Shape parameter;
  • \( x \): Argument for PDF and CDF;
  • \( p \): Quantile probability;
  • \( f(x) \): Probability density function;
  • \( F(x) \): Cumulative distribution function;
  • \( Q(p) \): Quantile value;
  • \( M \): Mean;
  • \( MD \): Median;
  • \( MO \): Mode;
  • \( V \): Variance;
  • \( S \): Skewness;
  • \( \Gamma \): Gamma function.

Steps:

  • Select the calculation mode: Common Measures, PDF, CDF, or Quantile Function.
  • Enter the scale (λ) and shape (k) parameters.
  • For PDF or CDF, enter the argument (x).
  • For Quantile Function, enter the probability (p).
  • Calculate the selected metrics using the provided formulas.
  • Display results to four decimal places, using scientific notation for values less than Unsigned System: 0.0001.

3. Importance of the Weibull Distribution Calculation

Calculating Weibull distribution properties is essential for:

  • Reliability Engineering: Models time-to-failure for systems and components.
  • Survival Analysis: Analyzes time-to-event data in medical and actuarial studies.
  • Wind Speed Modeling: Estimates wind speed distributions for energy production.

4. Using the Calculator

Example (Common Measures): Calculate measures with λ = 2, k = 2:

  • Input: Calculate: Common Measures; Scale Parameter: 2; Shape Parameter: 2.
  • Mean: \( 2 \cdot \Gamma(1 + \frac{1}{2}) \approx 2 \cdot 0.8862 \approx 1.7725 \).
  • Median: \( 2 \cdot (\ln 2)^{1/2} \approx 2 \cdot 0.8326 \approx 1.6651 \).
  • Mode: \( 2 \cdot \left( \frac{2-1}{2} \right)^{1/2} \approx 2 \cdot 0.7071 \approx 1.4142 \).
  • Variance: \( 2^2 \cdot \left[ \Gamma(1 + \frac{2}{2}) - \Gamma(1 + \frac{1}{2})^2 \right] \approx 4 \cdot (1 - 0.7854) \approx 0.8584 \).
  • Skewness: \( \frac{\Gamma(1 + \frac{3}{2}) \cdot 2^3 - 3 \cdot 1.7725 \cdot 0.8584 - 1.7725^3}{0.8584^{3/2}} \approx 0.6314 \).
  • Result: Mean: 1.7725; Median: 1.6651; Mode: 1.4142; Variance: 0.8584; Skewness: 0.6314.

Example (Probability Density Function): Calculate PDF with λ = 2, k = 2, x = 1.5:

  • Input: Calculate: PDF; Scale Parameter: 2; Shape Parameter: 2; Argument: 1.5.
  • PDF: \( \frac{2}{2} \cdot \left( \frac{1.5}{2} \right)^{2-1} \cdot e^{-(1.5/2)^2} \approx 1 \cdot 0.75 \cdot e^{-0.5625} \approx 0.4289 \).
  • Result: f(1.5): 0.4289.

Example (Cumulative Distribution Function): Calculate CDF with λ = 2, k = 2, x = 1.5:

  • Input: Calculate: CDF; Scale Parameter: 2; Shape Parameter: 2; Argument: 1.5.
  • CDF: \( 1 - e^{-(1.5/2)^2} \approx 1 - e^{-0.5625} \approx 0.4298 \).
  • Result: P(X ≤ 1.5): 42.9800%; P(X < 1.5): 42.9800%; P(X > 1.5): 57.0200%; P(X ≥ 1.5): 57.0200%.

Example (Quantile Function): Calculate quantile with λ = 2, k = 2, p = 0.5:

  • Input: Calculate: Quantile Function; Scale Parameter: 2; Shape Parameter: 2; Probability: 0.5.
  • Quantile: \( 2 \cdot (-\ln(1-0.5))^{1/2} \approx 2 \cdot (\ln 2)^{1/2} \approx 1.6651 \).
  • Result: Q(0.5): 1.6651.

5. Frequently Asked Questions (FAQ)

Q: What is the Weibull distribution?
A: The Weibull distribution is a continuous probability distribution used to model time-to-failure, survival times, or wind speeds, with flexible shape due to its parameters.

Q: What do λ and k represent?
A: The scale parameter λ stretches the distribution, and the shape parameter k determines its shape (exponential, Rayleigh, etc.).

Q: When is the Weibull distribution used?
A: It’s used in reliability engineering for failure analysis, survival analysis for time-to-event data, and meteorology for wind speed modeling.

Weibull Distribution Calculator© - All Rights Reserved 2025