Steel Cylinder Compression Calculator - Stress, Strain, and Deflection
Unit Converter ▲
Unit Converter ▼
1. What is the Compression Calculator?
Definition: The Compression Calculator determines the stress, strain, and deflection of a cylinder under a load using the formulas \( \sigma = \frac{P}{A} \), \( \varepsilon = \frac{\sigma}{E} \), and \( \delta = \varepsilon L \), where \(P\) is the load, \(A\) is the cross-sectional area, \(E\) is Young's modulus, and \(L\) is the length.
Purpose: Helps engineers analyze how a cylinder deforms under load (tensile or compressive).
Reference:Applied Strength of Materials for Engineering Technology
http://www.etcs.pfw.edu/~dupenb/ET_200/Applied%20Str%20of%20Mat%20for%20ET%20v14%20July%202018.pdf
2. How Does the Calculator Work?
Formulas:
\( \sigma = \frac{P}{A} \), \( \varepsilon = \frac{\sigma}{E} \), \( \delta = \varepsilon L \)
Where:
- \(\sigma\): Stress (MPa)
- \(P\): Load (kN, positive for tensile, negative for compressive)
- \(A\): Cross-sectional area (\( \pi d^2 / 4 \), cm²)
- \(\varepsilon\): Strain
- \(E\): Young's modulus (GPa)
- \(\delta\): Deflection (cm)
- \(L\): Length (cm)
Steps:
- Step 1: Input Load. Enter the load with sign (e.g., 70 kN for tensile, -70 kN for compressive).
- Step 2: Input Diameter. Enter the cylinder diameter (e.g., 5 cm).
- Step 3: Input Length. Enter the length (e.g., 3 cm).
- Step 4: Input Young's Modulus. Enter the modulus (e.g., 207 GPa).
- Step 5: Calculate. The calculator computes stress, strain, and deflection based on the load sign.
3. Importance of Load Calculation
Calculating load effects is crucial for:
- Structural Integrity: Ensures the cylinder can withstand deformation.
- Material Analysis: Assesses material behavior under tensile or compressive loads.
- Unit Consistency: Supports conversions across load, diameter, and length units.
4. Using the Calculator
Example 1 (Compressive):
Load = -70 kN, Diameter = 5 cm, Length = 3 cm, Young's Modulus = 207 GPa:
- Step 1: \(P = -70 \, \text{kN}\).
- Step 2: \(A = \pi (2.5)^2 = 19.63 \, \text{cm}^2\).
- Step 3: \(\sigma = \frac{-70}{19.63} \cdot 10 = -35.6 \, \text{MPa}\).
- Step 4: \(\varepsilon = \frac{-35.6}{207} = -0.000172\).
- Step 5: \(\delta = -0.000172 \cdot 3 = -0.00052 \, \text{cm}\).
Example 2 (Tensile):
Load = 70 kN, Diameter = 5 cm, Length = 3 cm, Young's Modulus = 207 GPa:
- Step 1: \(P = 70 \, \text{kN}\).
- Step 2: \(A = \pi (2.5)^2 = 19.63 \, \text{cm}^2\).
- Step 3: \(\sigma = \frac{70}{19.63} \cdot 10 = 35.6 \, \text{MPa}\).
- Step 4: \(\varepsilon = \frac{35.6}{207} = 0.000172\).
- Step 5: \(\delta = 0.000172 \cdot 3 = 0.00052 \, \text{cm}\).
5. Frequently Asked Questions (FAQ)
Q: What does the load sign mean?
A: Positive load indicates tension, negative load indicates compression.
Q: Why convert units?
A: The calculator ensures consistent units with a conversion factor to MPa.
Q: Is this accurate for all cylinders?
A: Yes, if the load, diameter, length, and modulus are correctly measured.