Home Back

Gravitational Time Dilation Calculator

Gravitational Time Dilation Formula

1. What is Gravitational Time Dilation Calculator?

Definition: This calculator computes the time interval (\( \Delta t' \)) affected by gravity near a massive object, based on the time interval (\( \Delta t \)) uninfluenced by gravity, the mass (\( M \)) of the object, and the distance (\( r \)) from its center.

Purpose: It is used in general relativity to understand how time passes differently in regions of varying gravitational strength, a phenomenon predicted by Einstein's theory of general relativity.

2. How Does the Calculator Work?

The calculator uses the following formula:

Formula:

  • \( \Delta t' = \Delta t \sqrt{1 - \frac{2 G M}{r c^2}} \)
Where:
  • \( \Delta t' \): Time interval affected by gravity (ps, ns, μs, ms, s, min, hr, day, wk, mo, yr, myr, byr, univ)
  • \( \Delta t \): Time interval uninfluenced by gravity (ps, ns, μs, ms, s, min, hr, day, wk, mo, yr, myr, byr, univ)
  • \( M \): Mass of the object (kg, t, oz, lb, st, us_ton, long_ton, earth_mass, solar_mass)
  • \( G \): Gravitational constant (\( 6.6743 \times 10^{-11} \, \text{Nm}^2/\text{kg}^2 \))
  • \( r \): Distance from the center of the object (m, km, ft, yd, mi, nmi, earth_radius, solar_radius, ly, au, pc, Mly, Mpc)
  • \( c \): Speed of light (\( 299,792,458 \, \text{m/s} \))

Unit Conversions:

  • Time (\( \Delta t \), \( \Delta t' \)):
    • 1 ps = \( 10^{-12} \) s
    • 1 ns = \( 10^{-9} \) s
    • 1 μs = \( 10^{-6} \) s
    • 1 ms = \( 10^{-3} \) s
    • 1 s = 1 s
    • 1 min = 60 s
    • 1 hr = 3600 s
    • 1 day = 86400 s
    • 1 wk = 604800 s
    • 1 mo = 2.628e6 s
    • 1 yr = 3.156e7 s
    • 1 myr = 3.156e13 s
    • 1 byr = 3.156e16 s
    • 1 univ = 1.38e10 yr = \( 1.38 \times 10^{10} \times 3.156 \times 10^7 \) s
  • Mass (\( M \)):
    • 1 kg = 1 kg
    • 1 t = 1000 kg
    • 1 oz = 0.0283495 kg
    • 1 lb = 0.453592 kg
    • 1 st = 6.35029 kg
    • 1 us_ton = 907.185 kg
    • 1 long_ton = 1016.05 kg
    • 1 earth_mass = \( 5.972 \times 10^{24} \) kg
    • 1 solar_mass = \( 1.989 \times 10^{30} \) kg
  • Distance (\( r \)):
    • 1 m = 1 m
    • 1 km = 1000 m
    • 1 ft = 0.3048 m
    • 1 yd = 0.9144 m
    • 1 mi = 1609.344 m
    • 1 nmi = 1852 m
    • 1 earth_radius = \( 6.371 \times 10^6 \) m
    • 1 solar_radius = \( 6.957 \times 10^8 \) m
    • 1 ly = \( 9.4607304725808 \times 10^{15} \) m
    • 1 au = \( 1.496 \times 10^{11} \) m
    • 1 pc = \( 3.08568 \times 10^{16} \) m
    • 1 Mly = \( 9.4607304725808 \times 10^{21} \) m
    • 1 Mpc = \( 3.08568 \times 10^{22} \) m

Steps:

  • Enter the time interval uninfluenced by gravity (\( \Delta t \)) with its respective unit (ps, ns, μs, ms, s, min, hr, day, wk, mo, yr, myr, byr, univ).
  • Enter the mass of the object (\( M \)) with its respective unit (kg, t, oz, lb, st, us_ton, long_ton, earth_mass, solar_mass).
  • Enter the distance from the center of the object (\( r \)) with its respective unit (m, km, ft, yd, mi, nmi, earth_radius, solar_radius, ly, au, pc, Mly, Mpc).
  • Convert the time interval to seconds, mass to kilograms, and distance to meters.
  • Calculate the time interval affected by gravity using \( \Delta t' = \Delta t \sqrt{1 - \frac{2 G M}{r c^2}} \).
  • Select the desired unit for the result (ps, ns, μs, ms, s, min, hr, day, wk, mo, yr, myr, byr, univ).
  • Convert the result to the selected unit.
  • Display the result, using scientific notation for values less than 0.001, otherwise with 4 decimal places.

3. Importance of Gravitational Time Dilation Calculation

Calculating gravitational time dilation is crucial for:

  • General Relativity: It demonstrates how gravity affects the passage of time, a key prediction of Einstein's theory of general relativity.
  • GPS Technology: Gravitational time dilation must be accounted for in GPS satellites, which experience weaker gravity than on Earth's surface, causing their clocks to tick faster.
  • Astrophysics: It helps understand time differences near massive objects like black holes, where gravitational effects are extreme.

4. Using the Calculator

Examples:

  • Example 1: Calculate the time dilation for a time interval of 1 second near the Sun (\( M = 1 \, \text{solar mass} \)) at a distance of 1 AU, with the result in seconds:
    • Enter \( \Delta t = 1 \) s.
    • Enter \( M = 1 \) solar mass.
    • Convert mass: \( M = 1 \times 1.989 \times 10^{30} = 1.989 \times 10^{30} \) kg.
    • Enter \( r = 1 \) AU.
    • Convert distance: \( r = 1 \times 1.496 \times 10^{11} = 1.496 \times 10^{11} \) m.
    • \( \frac{2 G M}{r c^2} = \frac{2 \times 6.6743 \times 10^{-11} \times 1.989 \times 10^{30}}{1.496 \times 10^{11} \times (299,792,458)^2} \approx 1.975 \times 10^{-8} \)
    • \( \Delta t' = 1 \times \sqrt{1 - 1.975 \times 10^{-8}} \approx 0.9999999901 \) s
    • Result: \( \Delta t' = 1.0000 \) s
  • Example 2: Calculate the time dilation for a time interval of 1 hour near the Earth (\( M = 1 \, \text{Earth mass} \)) at a distance of 1 Earth radius, with the result in milliseconds:
    • Enter \( \Delta t = 1 \) hr.
    • Convert time: \( \Delta t = 1 \times 3600 = 3600 \) s.
    • Enter \( M = 1 \) Earth mass.
    • Convert mass: \( M = 1 \times 5.972 \times 10^{24} = 5.972 \times 10^{24} \) kg.
    • Enter \( r = 1 \) Earth radius.
    • Convert distance: \( r = 1 \times 6.371 \times 10^6 = 6.371 \times 10^6 \) m.
    • \( \frac{2 G M}{r c^2} = \frac{2 \times 6.6743 \times 10^{-11} \times 5.972 \times 10^{24}}{6.371 \times 10^6 \times (299,792,458)^2} \approx 1.39 \times 10^{-9} \)
    • \( \Delta t' = 3600 \times \sqrt{1 - 1.39 \times 10^{-9}} \approx 3599.9999975 \) s
    • Convert to ms: \( \Delta t' = 3599.9999975 \times 1000 = 3,599,999.9975 \) ms
    • Result: \( \Delta t' = 3600000.0000 \) ms

5. Frequently Asked Questions (FAQ)

Q: What is gravitational time dilation?
A: Gravitational time dilation is the phenomenon where time passes more slowly in stronger gravitational fields, as predicted by Einstein's theory of general relativity.

Q: Why does time slow down near massive objects?
A: According to general relativity, gravity warps spacetime, and clocks in stronger gravitational fields tick more slowly compared to those in weaker fields or at infinite distance.

Q: What is the Schwarzschild radius, and why does it matter?
A: The Schwarzschild radius is the radius at which the term \( \frac{2 G M}{r c^2} = 1 \), marking the event horizon of a black hole. The formula is not valid inside this radius, as it would imply imaginary time dilation.

Gravitational Time Dilation Calculator© - All Rights Reserved 2025