Home Back

Heating Load with Humidification Calculator

Heating Load with Humidification

1. What is a Heating Load with Humidification Calculator?

Definition: This calculator computes the heating load (\( \dot{q} \)) in a heating and humidification process, accounting for both sensible heat addition (temperature increase) and the energy required to add moisture to the air.

Purpose: It is used in HVAC systems to determine the total heating required to both raise the air temperature and increase its humidity, aiding in the design and sizing of heating and humidification systems.

2. How Does the Calculator Work?

The calculator uses the following formula for the heating load:

Heating Load: \[ \dot{q} = \dot{m}_a \left( (h_2 - h_1) + (W_1 - W_2) h_w \right) \]

Where:

  • \( \dot{q} \): Heating load (Btu/hr, convertible to kW)
  • \( \dot{m}_a \): Mass flow rate of dry air (lb_m/hr, kg/hr)
  • \( h_1 \): Enthalpy of entering air (Btu/lb_m, kJ/kg)
  • \( h_2 \): Enthalpy of leaving air (Btu/lb_m, kJ/kg)
  • \( W_1 \): Entering humidity ratio (lb_v/lb_da, kg_v/kg_da)
  • \( W_2 \): Leaving humidity ratio (lb_v/lb_da, kg_v/kg_da)
  • \( h_w \): Enthalpy of added water (Btu/lb_v, kJ/kg)

Unit Conversions:

  • Mass Flow Rate (\( \dot{m}_a \)): lb_m/hr, kg/hr (1 kg/hr = 2.20462 lb_m/hr)
  • Enthalpies (\( h_1 \), \( h_2 \), \( h_w \)): Btu/lb_m or Btu/lb_v, kJ/kg (1 kJ/kg = 0.429923 Btu/lb_m or Btu/lb_v)
  • Humidity Ratios (\( W_1 \), \( W_2 \)): lb_v/lb_da, kg_v/kg_da (numerically the same, label changes for clarity)
  • Heating Load (\( \dot{q} \)): Btu/hr, kW (1 Btu/hr = 0.000293071 kW)

Steps:

  • Enter the mass flow rate (\( \dot{m}_a \)), entering and leaving enthalpies (\( h_1 \), \( h_2 \)), entering and leaving humidity ratios (\( W_1 \), \( W_2 \)), and the enthalpy of added water (\( h_w \)), and select their units.
  • Convert mass flow rate to lb_m/hr, enthalpies to Btu/lb_m (or Btu/lb_v for \( h_w \)), and ensure humidity ratios are consistent.
  • Calculate the heating load using the formula.
  • Convert the result to the selected unit (Btu/hr or kW).
  • Display the result with 5 decimal places, or in scientific notation if the value is greater than 10,000 or less than 0.00001.

3. Importance of Heating Load with Humidification Calculation

Calculating the heating load in a heating and humidification process is crucial for:

  • HVAC Design: Determines the total heating required to both raise air temperature and add moisture, aiding in the sizing of heating and humidification equipment.
  • Energy Efficiency: Helps optimize energy usage by ensuring the system is appropriately sized for both sensible and latent loads.
  • System Performance: Ensures the system can achieve the desired temperature and humidity levels for comfort and process requirements.

4. Using the Calculator

Examples:

  • Example 1: For \( \dot{m}_a = 9508 \, \text{lb_m/hr} \), \( h_1 = 11.83 \, \text{Btu/lb_m} \), \( h_2 = 44.93 \, \text{Btu/lb_m} \), \( W_1 = 0.002 \, \text{lb_v/lb_da} \), \( W_2 = 0.016 \, \text{lb_v/lb_da} \), \( h_w = 1135 \, \text{Btu/lb_v} \), heating load in Btu/hr:
    • \( \dot{q} = 9508 \times ( (44.93 - 11.83) + (0.002 - 0.016) \times 1135 ) \)
    • \( \dot{q} = 9508 \times ( 33.1 + (-0.014) \times 1135 ) \)
    • \( \dot{q} = 9508 \times ( 33.1 - 15.89 ) \approx 9508 \times 17.21 \approx 163759.88000 \)
    • Since 163759.88000 > 10000, use scientific notation: \( 1.63760e+5 \)
  • Example 2: For \( \dot{m}_a = 1000 \, \text{kg/hr} \), \( h_1 = 25 \, \text{kJ/kg} \), \( h_2 = 60 \, \text{kJ/kg} \), \( W_1 = 0.005 \, \text{kg_v/kg_da} \), \( W_2 = 0.010 \, \text{kg_v/kg_da} \), \( h_w = 2500 \, \text{kJ/kg} \), heating load in kW:
    • Convert: \( \dot{m}_a = 1000 \times 2.20462 = 2204.62 \, \text{lb_m/hr} \), \( h_1 = 25 \times 0.429923 = 10.7481 \, \text{Btu/lb_m} \), \( h_2 = 60 \times 0.429923 = 25.7954 \, \text{Btu/lb_m} \), \( h_w = 2500 \times 0.429923 = 1074.8075 \, \text{Btu/lb_v} \)
    • \( \dot{q} = 2204.62 \times ( (25.7954 - 10.7481) + (0.005 - 0.010) \times 1074.8075 ) \)
    • \( \dot{q} = 2204.62 \times ( 15.0473 + (-0.005) \times 1074.8075 ) \)
    • \( \dot{q} = 2204.62 \times ( 15.0473 - 5.3740375 ) \approx 2204.62 \times 9.6732625 \approx 21323.24185 \, \text{Btu/hr} \)
    • Convert to kW: \( 21323.24185 \times 0.000293071 = 6.24792 \, \text{kW} \)
    • Since 6.24792 < 10000 and > 0.00001, display with 5 decimal places: \( 6.24792 \)
  • Example 3: For \( \dot{m}_a = 0.01 \, \text{lb_m/hr} \), \( h_1 = 10 \, \text{Btu/lb_m} \), \( h_2 = 20 \, \text{Btu/lb_m} \), \( W_1 = 0.003 \, \text{lb_v/lb_da} \), \( W_2 = 0.005 \, \text{lb_v/lb_da} \), \( h_w = 1000 \, \text{Btu/lb_v} \), heating load in Btu/hr:
    • \( \dot{q} = 0.01 \times ( (20 - 10) + (0.003 - 0.005) \times 1000 ) \)
    • \( \dot{q} = 0.01 \times ( 10 + (-0.002) \times 1000 ) \)
    • \( \dot{q} = 0.01 \times ( 10 - 2 ) \approx 0.01 \times 8 = 0.08000 \)
    • Since 0.08000 < 0.00001, use scientific notation: \( 8.00000e-2 \)

5. Frequently Asked Questions (FAQ)

Q: What is a heating and humidification process in HVAC?
A: A heating and humidification process in HVAC involves raising the air temperature and adding moisture, typically using a heating coil and a humidifier to increase both temperature and humidity for comfort or process requirements.

Q: Why does the formula account for both sensible and latent heat?
A: The formula accounts for sensible heat (temperature increase, \( h_2 - h_1 \)) and latent heat (moisture addition, \( (W_1 - W_2) h_w \)) because both contribute to the total heating load in a humidification process.

Q: How do I determine the enthalpy and humidity ratio values if I don’t have a psychrometric chart?
A: Enthalpy (\( h_1 \), \( h_2 \)) and humidity ratios (\( W_1 \), \( W_2 \)) can be calculated using psychrometric equations or software, based on temperature, pressure, and humidity conditions, or approximated using standard air properties.

Heating Load with Humidification Calculator© - All Rights Reserved 2025